Составить уравнение биссектрисы угла можно с помощью свойства биссектрисы угла.
Выведем уравнения биссектрис углов, образованных двумя пересекающимися прямыми a1x+b1y+c1=0 и a2x+b2y+c2=0.
Расстояние от точки (xo;yo) до прямой ax+by+c=0 определяется по формуле
По свойству биссектрисы угла любая точка, лежащая на биссектрисе угла, равноудалена от его сторон.
Следовательно, любая точка M(x;y), лежащая на биссектрисе угла, образованного прямыми a1x+b1y+c1=0 и a2x+b2y+c2=0, находится от этих прямых на одинаковом расстоянии, то есть
Это равенство можно записать в виде
Получили уравнения двух биссектрис углов, образованных пересекающимися прямыми.
Пример.
Написать уравнения биссектрис углов, образованного прямыми 4x-3y-10=0 и 9x-12y-7=0.
Решение:
В формулу уравнения биссектрис подставляем данные прямых:
Ответ: 3x+3y-23=0; 21x-21y-37=0.