Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?
Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.
1 способ
Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.
Пример.
1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.
Решение:
М — середина отрезка AB, N — середина BC.
По формулам координат середины отрезка
Таким образом,
Составим уравнение прямой MN, например, в виде y=kx+b:
Отсюда
2 способ
Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.
Решение:
— середина отрезка AB. Составим уравнение прямой AC:
Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.
Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:
то есть уравнение прямой MN ищем в виде
Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:
Таким образом, уравнение прямой MN
или
Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.
Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).
Решение:
1 способ
Сначала следует определить основания данной трапеции.
Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.
A(-2;1), D(0;-3), отсюда
Значит, уравнение прямой AD: y= -2k-3.
B(1;5), C(4;-1),
Уравнение прямой BC: y= -2k+7.
Поскольку угловые коэффициенты прямых равны:
то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины AB и CD соответственно.
Составим уравнение прямой MN, M(-1/2;3), N(2;-2):
то есть y=-2k+2.
2 способ
Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.
Значит уравнение MN ищем в виде y= -2x+b.
Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:
Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.