Утверждение.
(Свойство равнобедренной трапеции)
Углы при основании равнобедренной трапеции равны.
Дано: ABCD — трапеция,
AD ∥ BC,AB=CD.
Доказать:∠A=∠D, ∠B=∠C.
Доказательство:
1) Проведем из вершин тупых углов высоты BF и CK:
2) Рассмотрим треугольники ABF и DCK.
∠AFB=90º, ∠DKC=90º (так как BF и CK — высоты трапеции).
AB=CD (по условию),
BF=CK (как высоты трапеции).
Отсюда следует, что треугольники ABF и DCK равны (по катету и гипотенузе).
3) Из равенства треугольников следует равенство соответствующих углов: ∠A=∠D.
4) ∠A+∠ABC=180º (как внутренние односторонние при AD ∥ BC и секущей AB).
Отсюда, ∠ABC=180º-∠A.
Аналогично, ∠D+∠DCB — внутренние односторонние при AD ∥ BC и секущей CD, и ∠DCB=180º-∠D.
Так как ∠A=∠D, то и ∠ABC=∠DCB.
Что и требовалось доказать.