Как найти точку пересечения медиан треугольника, зная координаты его вершин?
1 способ
Поскольку все медианы треугольника пересекаются в одной точке, достаточно составить уравнения двух медиан и найти координаты их точки пересечения.
Пример.
Найти координаты точки пересечения медиан треугольника с вершинами в точках A(-4;-1), B(0;-3), C(2;1).
Решение:
Обозначим середины сторон BC и AC через A1 и B1 соответственно. По формулам координат середины отрезка
Составим уравнения медиан AA1 и BB1.
Уравнение медианы AA1 можно найти как уравнение прямой, проходящей через две точки A(-4;-1) и A1(1;-1).
то есть уравнение прямой AA1 y= -1.
B(0;-3), B1(-1;0). Найдём уравнение медианы BB1.
откуда уравнение прямой BB1 y= -3x-3.
Координаты точки пересечения прямых AA1 и BB1 ищем как решение системы уравнений
Ответ:
2 способ
Поскольку все медианы медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины, можно найти координаты концов любой медианы, а затем точку, которая делит медиану в отношении 2:1, начиная отсчёт от точки, которая является вершиной треугольника.
Например, в условиях предыдущей задачи — найти координаты точки пересечения медиан треугольника с вершинами в точках A(-4;-1), B(0;-3), C(2;1), —
зная координаты A1(1;-1), найдём координаты точки M. Точка M пересечения медиан треугольника делит отрезок AA1 в отношении 2:1, считая от точки A.
По формулам деления отрезка в данном отношении