Рассмотрим, как может быть найдена средняя линия треугольника по рисунку на клетчатой бумаге.
Задача 1
На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC.
Найдите длину его средней линии, параллельной стороне AB.
Решение:
Как правило, в таких заданиях на чертеже треугольник расположен таким образом, что по клеточкам посчитать длину средней линии невозможно.
Но задача легко разрешима с применением свойства средней линии треугольника:
средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна её половине.
Следовательно, чтобы найти длину средней линии, параллельной стороне AB, надо найти длину отрезка AB.
Длина искомой средней линии равна её половине.
1) AB=6,
А как быть, если длину стороны треугольника посчитать по клеточкам не получается?
Возможно, в этом случае сторону треугольника можно найти с помощью теоремы Пифагора.
Задача 2
На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC.
Найдите длину его средней линии, параллельной стороне AB.
Решение:
1)В прямоугольном треугольнике ABC AB — гипотенуза.
AC=4, BC=3.
По теореме Пифагора
Средняя линия MN равна половине гипотенузы:
2)Достроим по клеточкам прямоугольный треугольник ABD с гипотенузой AB.
По теореме Пифагора