Как найти площадь трапеции по 4 сторонам?
Чтобы найти площадь трапеции, нужно знать её основания и высоту. Основания известны, следовательно, задача сводится к нахождению высоты трапеции.
I способ.
Из вершины тупого угла провести прямую, параллельную боковой стороне.
Найти площадь полученного треугольника по формуле Герона. Зная площадь, найти высоту треугольника, которая является также высотой трапеции.
Задача 1.
Найти площадь трапеции, основания которой равны 11 см и 28 см, а боковые стороны — 25 см и 26 см.
Дано: ABCD — трапеция,
AD∥BC, AB=25 см, BC=11 см,
CD=26 см, AD=28 см
Найти:
Решение:
1) Проведем через вершину C прямую CL, CL∥AB.
Четырехугольник ABCL — параллелограмм (по определению, так как BC∥AL — по условию, CL∥AB — по построению).
По свойству параллелограмма, AL=BC=11 см, CL=AB=25 см. Следовательно, LD=AD-AL=28-11=17 см.
2) Рассмотрим треугольник CDL. Его площадь найдём по формуле Герона
3) По формуле
найдём площадь трапеции ABCD:
Ответ: 468 см².
II способ.
Провести из тупых углов трапеции две высоты.
В результате получим прямоугольник и два прямоугольных треугольника.
Один из катетов этих треугольников — высота трапеции. Её можно выразить через другие стороны в каждом из треугольников, затем приравнять полученные равенства.
Задача 2.
Найти площадь трапеции, основания которой равны 10см и 14 см, а боковые стороны — 13 см и 14 см.
Дано:ABCD — трапеция,
AD∥BC, AB=13 см, BC=10 см,
CD=15 см, AD=14 см
Найти:
Решение:
Проведём высоты трапеции BK и CF.
Четырёхугольник BCFK — прямоугольник (так как у него все углы прямые). Поэтому, KF=BC=10 см.
Пусть FD=x см, тогда AK=AD-KF-FD=14-10-x=4-x см.
Рассмотрим треугольник CDF — прямоугольный. По теореме Пифагора
Аналогично, из треугольника ABK
Приравниваем правые части:
Ответ: 144 см².
Традиционно трапецию изображают именно в таком виде, как на рисунке 1 — с двумя тупыми углами при меньшем основании.
Но в трапеции также могут быть тупыми противоположные углы — как на рисунке 2.
Для трапеции с противоположными тупыми углами верны все рассуждения, приведенные выше, за одним исключением — в этом случае BC=AF=AK+AF.
В разных вариантах трапеции отрезки FD и AK имеют разную длину, но величина высоты, а значит, и площади, одинакова.
Интересное утверждение в решении задачи 2: ‘Четырёхугольник BCFK — прямоугольник (так как у него все углы прямые). Поэтому, BK=CF=10 см.’
Если этот четырёхугольник — прямоугольник, то это ещё не значит, что он квадрат.
Не согласна с этим объяснением. Прокомментируйте подробнее.
Конечно, имелось в виду KF=BC=10 см.