Окружность, описанная около правильного треугольника, обладает всеми свойствами описанной около произвольного треугольника окружности и, кроме того, имеет свои собственные свойства.
1) Центр описанной около треугольника окружности — точка пересечения серединных перпендикуляров к его сторонам.
Поскольку в равностороннем треугольнике медианы, высоты и биссектрисы совпадают, центр описанной около правильного треугольника окружности лежит в точке пересечения его медиан, высот и биссектрис.
Например, в правильном треугольнике ABC AB=BC=AC=a
точка O — центр описанной окружности.
AK, BF и CD — медианы, высоты и биссектрисы треугольника ABC.
2) Расстояние от центра описанной окружности до вершин треугольника равно радиусу. Так как центр описанной около равностороннего треугольника окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус описанной окружности составляет две трети от длины медианы:
Таким образом, формула радиуса описанной около правильного треугольника окружности —
И обратно, сторона равностороннего треугольника через радиус описанной окружности —
3) Формула для нахождения площади правильного треугольника по его стороне —
Отсюда можем найти площадь через радиус описанной окружности:
Таким образом, формула площади площади правильного треугольника через радиус описанной окружности —
4) Центр описанной около правильного треугольника окружности совпадает с центром вписанной в него окружности.
5) Радиус описанной около равностороннего треугольника окружности в два раза больше радиуса вписанной окружности: